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Networks of neuronlike elements described by a simple model are studied. For a single neuron, a number of
bifurcations and chaotic attractors are observed. A mechanism of an associative production of information
based on a transitionfixed point→chaotic attractor→new fixed pointis proposed and discussed.
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Recent progress@1# in investigation into neurocomputing
is based to a large extent on the seminal paper of Hopfield
@2# who studied networks composed of binary, all-or-none,
formal neurons@3# having symmetric interneuronal~synap-
tic! couplings. Among brain functions Hopfield concentrated
only on associative memory~AM !, i.e., on a system that
should retrieve an entire stored pattern if sufficient partial
information~a noisy pattern or a part of the original pattern!
is presented to the system. Obviously, it is important to go
beyond the limits of this approach towards~i! models more
close to real nervous systems and~ii ! other types of informa-
tion processing performed by them. In this paper we attempt
to advance in both directions in order to attain the two goals
described as follows.

First, it is desirable to have a model in which a neuron can
exhibit a rich variety of dynamical regimes including not
only such classical phenomena as oscillations, threshold be-
havior, etc.~see, e.g.,@4–6#! but also chaotic motion. There
are experimental observations that a real nerve cell can dem-
onstrate chaotic behavior@7# and chaotic modes can be of
great importance in brain activity as discussed in a number
of papers~see, e.g.,@6,8,9#!.

Second, we would like that a system of neuronlike ele-
ments can function both as AM and an associative generator
of information. Following the Hopfield approach@1,2#, we
assume that any piece of information~pattern! m is encoded
by a fixed point~FP! jm of the network dynamics in such a
way that close, in a sense, patterns are mapped into close
points of the phase space. Then an AM machine should op-
erate so that if its initial state falls in a neighborhood of a FP
jm then the state converges tojm. Analogously, by associa-
tive generation of information~AGI! we mean the following:
if the appearance of a pattern encoded by a FPjm is ad-
versely evaluated for some reason by the system~or by an
external supervisor! then a new FPj̃m should be produced in
the vicinity of the former, yielding a new pattern. AGI is
important for elaboration of plans of behavior, creative
thinking, forecasting, and even for such mental processes as
perception and recognition of patterns@10#.

Plainly, AGI machines could be designed by making use
of a random generation of numbers. However, this way can
obviously be too exhaustive and seems to be not plausible
for real nervous systems. On the other hand, it is well known

that chaos is characterized by divergence, in certain direc-
tions, of close phase trajectories and hence a chaotic attractor
~CA! can, in principle, be viewed as a generator of some
information~see, e.g.,@9#!. It is natural therefore to look for
dynamical mechanisms of AGI on the basis of chaotic phe-
nomena in neural networks. Thus our second, main, target
mentioned above closes to the first.

As a reliable ground of research into computational abili-
ties of neural networks, one may take the known Hodgkin-
Huxley equations@11#, which provide a good quantitative
description of essential properties of nerve cells@4–6#. How-
ever, they are too complicated. As a simplification that re-
produces principal features of the Hodgkin-Huxley equa-
tions, the FitzHugh model@12# is often accepted@5#. The
state of a neuron is determined, in this model, by two vari-
ables and therefore dynamical equations for them do not ad-
mit chaotic solutions@13#. For this reason, we study a simple
generalization of the FitzHugh model in which the state of a
neuron is described by three dynamical variablesx,y,z
whose time evolution is governed by the differential equa-
tions:

ẋ5a1x1a2y1a3z1a42lx31J,

ẏ5b1x1b2y1b3z1b4 , ~1!

ż5c1x1c2y1c3z1c4 .

Here am ,bm ,cm ,m51,2,3,4, are constants,l is a positive
constant, andJ is a current entering the neuron. Equations
~1! can also be treated as a reduced variant of the Hodgkin-
Huxley equations or as a partly linearized version of the
model of Hindmarsh and Rose@14#. They are a straightfor-
ward generalization of the van der Pol–Duffing equations
@15# as well. A biological motivation of Eqs.~1! and inter-
pretation of the variables and parameters can be different
depending on the point of view at the equations@16#.

Computer simulations show that a single neuron de-
scribed by Eqs.~1! can possess, depending upon the values
of the parameters, such types of attractors as fixed point~FP!,
periodic attractor~PA!, chaotic attractor~CA!, and coexist-
ence of up to five attractors can occur in some parameter
regions:$FP, FP%, $FP, PA%, $FP, CA%, $PA, PA%, $PA, CA%,
$CA, CA%, $PA, PA, PA%, $PA, PA, CA%, $PA, CA, CA%,
$CA, CA, CA%, $PA, PA, PA, PA%, $PA, PA, PA, CA%, $PA,
PA, CA, CA%, $PA, CA, CA, CA%, $PA, PA, PA, PA, PA%,*Electronic address: linkevich@psu.vitebsk.by
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$PA, PA, PA, PA, CA%, $PA, PA, CA, CA, CA%. A number
of bifurcations are observed such as changes of the stability
of FP’s, period doubling, intermittency explosions, interior
and boundary crises, and various changes of the symmetry of
CA’s and PA’s including homoclinic connections for cycles
of different complexity.

As a typical example of a sequence of bifurcations,
we mention the following chain: FP→P1→FP→2FP→
2PD→2C→2I→2P3→2PD→2C@P3#→C→I→P3 &
P3→PD→C @P3 & P3#→C→I→P5 & P5→PD→C→
2C→2PD→2P1→2FP. This scenario appears
as the coefficienta1 is varied and Eqs.~1! are symmetric
under reflection ~i.e., when a45b45c45J50; values
of the parameters are the following:ak5$a1 ,23,3%,
bk5$255,0,15%,ck5$18,218,22.5%, k51,2,3, andl51;
this set of values is used in what follows for illustrations, if
other values are not given!. HereP1, P3, andP5 designate
a PA comprised of one, three, and five ‘‘turns’’ respectively;
P3&P3 corresponds to a symmetric cycle similar in form to
two cyclesP3; PD and I are the marks of period doubling
and intermittency, respectively; the expressionC@P3# means
that the CA resembles, in a sense, a cycleP3 @see, e.g., Fig.
1~a!#. The number 2 before a designation of an attractor in-
dicates that there are actually two attractors symmetric under
reflection. Phase portraits of two CA’s are given in Fig. 1. A
bifurcation diagram is given in Fig. 2@17#.

One can also mention such a phenomenon as a tight in-
tertwining of coexisting attractors observed at some values
of parameters. This property implies that the shape of a
single spike of oscillations does not depend practically on the

attractor but samples of such impulses are different for dif-
ferent attractors. In particular, the frequency of impulses as a
function of a current entering a neuron has a form that de-
pends on the attractor. Another feature, revealed for coexist-
ing CA’s, is a sensitivity of the sample of impulses, for a
particular attractor, to a value of the bifurcation parameter
a1 .

The main conclusion here is that Eqs.~1! exhibit both the
classical properties of a neuron@as it should be because Eqs.
~1! yield a generalization of the FitzHugh model# and prac-
tically all types of chaotic behavior revealed in other three-
dimensional nonlinear systems so that our first target is
achieved in plenty. Unfortunately, there are no relevant neu-
robiological data to carry out detailed comparisons with our
findings.

Now we consider the behavior of a system composed of
N identical elements described by Eqs.~1!. The interaction
between the neurons results in the currentsJ1 , . . . ,JN enter-
ing them. The commonly accepted equation is
Ji5I i1( j51

N Ti jwj , whereI i is an external current received
by the neuroni and the synaptic efficacyTi j determines the
strength of the influence of an output signalwj of the j th
neuron on the state of thei th neuron. As usual, we set
wi5 f (xi) wheref ( ) is an input-output transfer function of a
neuron assumed to be a monotone sigmoid~for a discussion
of such a representation see, e.g.,@6#!. A typical simple
choice isw5tanh(gx), g5const. A more accurate represen-
tation is the Freeman parametrization of experimental data of
the form @6,19# w5F(x)[w0„a2exp$2@exp(bx)2g#/k%…,
if x.x0 , otherwisew50. Here x05b21ln(g2klnd) and
w0 ,a,b,g,d, andk are constants. We used both the equa-
tions although most intensive studies were carried out for the
linear approximation of the transfer function,
w5hx, h5const, because this enables us to look for appro-
priate values of the network parameters with the aid of an
analytic technique@17,18#.

Following the Hopfield approach@1,2#, the matrix of in-
terneuronal couplingsT should be adjusted so that the set of
given N-dimensional vectorsj1, . . . ,jp encoding memo-
rized patterns~MP’s! be FP’s~as usually, we consider the
casep,N). Therefore the matrixT must obey the system of
equations( jTi jv j

m1ui
m50. Here vectorsv1, . . . ,vp and

u1, . . . ,up are defined so that v i
m5 f (j i

m) and

FIG. 1. Phase portraits of two CA’s projected on thex-y plane
for a neuron~1! appearing at different values of the bifurcation
parametera1 :(a) a153.9; (b) a153.96. ~Values of the other
parameters are given in the text!. Estimated values of the largest
Lyapunov exponentl and the Lyapunov dimensiondl are ~a!
l50.24, dl52.009; (b) l50.92, dl52.033.

FIG. 2. A bifurcation diagram for a neuron~1! as the coefficient
a1 is varied in magnitude along the horizontal axis. Values of thex
coordinates of points in the Poincare section defined by intersec-
tions of the phase trajectory with the planey50 are plotted along
the vertical axis.
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ui
m5a1j i

m1a2z i
m1a3h i

m1a42l(j i
m)31I i

m , where z i
m and

h i
m are solutions of the linear equations

b1j i
m1b2z i

m1b3h i
m1b450 and c1j i

m1c2z i
m1c3h i

m1c4
50 (m51, . . . ,p,i51, . . . ,N).

The general solutionT is expressed through a particular
solutionR and a solutionH of the corresponding homoge-
neous equation so thatT5R1BH whereB is an arbitrary
matrix. To obtain the matricesR andH, we will use in what
follows the projection learning rule@20,21#, which yields the
equationRi j

m5Ri j
m212((kr k

m21vk
m)21(ui

m1(kRik
m21vk

m)r j
m21

and an analogous formula forHi j
m . Herem51, . . . ,p and

vectors rm are defined so as to satisfy the conditions
(kr k

mvk
a50,a51, . . . ,m and(kr k

mvk
m11Þ0.

To compute the vectorsrm we exploit outer products@22#
of vectorsv1, . . . ,vm as follows @21#. Let us consider the
componentsVi1••• im

of an axial skew-symmetric tensor

V:Vi1••• im
5(1

N« i1••• imk1•••km
vk1
1
•••vkm

m . Herem5N2m and

« j 1••• j N
are components of the fully antisymmetric tensor.

For the case of linearly independent vectorsv1, . . . ,vm

treated in what follows, there exists at least one nonzero
component of the tensor V. Let Vn1•••nm

Þ0,

n1,•••,nm . Then take arbitrary values as the coordi-
natesbn1, . . . ,bnm of a vectorb and determine the other
coordinates by the equation

bj5~Vn1•••nm
!21(

i51

m

bniVn1•••ni21 jni11•••nm

where jP$1,2, . . . ,N%\$n1 , . . . ,nm%. Every such vectorb
is orthogonal to the vectorsv1, . . . ,vm and therefore we can
set rm5b. Thus the synaptic matrixT is determined not
uniquely but, instead, through the set of free parameters and
they are explicitly given. It is of interest to examine how the
behavior of a network is changed as these parameters are
varied while the FP’s encoding MP’s are retained.

We studied the learning and performance of networks
when the number of neuronsN54, 6, or 8 and number of
MP’s p52. For any set of MP’s, such synaptic matrices
were constructed that produce all types of stability. As the
synaptic matrix has been adjusted so that MP’s are stable
FP’s, the system can be treated as autoassociative memory
@see Fig. 3~a! for an illustration# @23#.

Of special interest here is the case when a FP encoding a
MP loses its stability because the synaptic couplings are
modified due to a change of parameters of the above learning
rule @24,25#. The type of motion most often observed now is
periodic oscillations. It happens that they are preceded by
irregular transient processes. As parameters of the learning
algorithm are varied, transient processes can become stable
and CA’s appear. They may either be placed around the un-
stable FP or consist of two such symmetric wings that one of
them is located around the FP. The phase portraits of the
CA’s are similar to that shown in Fig. 1~b!.

Inverse transmutation of a CA into a stable FP can obvi-
ously be done by an appropriate change of parameters of the
learning rule. Another way is control of chaos, which can be
caused by feedback with time delay@26# appearing in neural
networks in a natural way. We used two models to investi-
gate such a phenomenon. Namely, we replaced the

above equation for the neuron currentJi either by
Ji8(t)5( jTi j f „xj (t)…1( j T̃i j f „xj (t2t i j )… or by Ji9(t)
5( jTi j f „xj (t2t i j )… ~we set the external currentI i to zero!.
For simplicity, only one term with time delay was usually
introduced in fact. The corresponding quantityt i j ~usually
t21 or t11) was linearly increased from zero to a fixed value
t i j* ~taken to be in the interval 0.03, . . . ,0.15! during a time
intervalDtd ~we chose as a ruleDtd55 but a value ofDtd
was increased up to 25 to test the stability of effects ob-
served!. The additional synaptic couplingsT̃i j were linearly
changed from zero to fixed valuesTi j* ~taken to be of the
order 0.1Ti j ).

Usually, such a stabilization of a CA yields a PA but there
exist values of parameters that a stable FPj̃m occurs. De-
pending on the parameters’ values, this FPj̃m either coin-
cides with the FPjm from which the CA has appeared or is
a new FP close tojm. For the linear transfer function
f (x)5x, the time intervalDts between switching on the time
delay and stabilization of the FPj̃m was found to be
20, . . .,50. This time can be divided into two phases,
Dts5Dts11Dts2 , so that duringDts1 the behavior of the
system seems to be irregular while the second regime is an
oscillatory relaxation towards the FPj̃m. Duration of the first

FIG. 3. Time dependence of the variablex1 of the first neuron of
a network composed ofN54 neurons for the case when FP’s are
j15~22.8, 23.1, 27.4, 5.7!, j25~22., 5., 1.7, 7.1!. The transfer
function is f (x)5tanh(0.2x); a1528; values of the other param-
eters of a neuron are given in the text.~a! The synaptic matrixT has
such values~see below! that j1 and j2 are stable FP’s and the
network operates as AM.~b! The synaptic matrix has such values
that j1 andj2 are nonstable FP’s and CA’s occur around them.~c!
The synaptic matrix is the same in~b! but time delay is introduced
at time instantt5450 (Dt55, t21* 50.05,T21* 5214.) sothat the
currentJi8 is used instead ofJi . ~d! The currentJi9 is used instead of
Ji , the synaptic matrix is the same as in~b! and ~c!. Time
delay is introduced att5450 (Dtd55, t21* 50.04!. @Values of el-
ements of the synaptic matrix are the following (k51,2,3,4): ~a!
T1k5(95.5068;638.88;2665.71;2266.658), T2k5(2699.411;
2882.021;1120.13;175.973),T3k5(652.134;627.987;2409.855;
2105.62), T4k5(266.2163;976.012;2887.861;2146.882);(b),
(c),(d) T1k5(2176.792;2127.611;167.126;233.339), T2k5
(2176.364;256.2778;192.292;33.9942), T3k5(653.519;
638.28;2420.736;2109.835!, T4k5(2545.998;2301.375;
503.557;229.581)].
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phaseDts1510, . . . ,20 wasfound to be practically indepen-
dent of the time delay parametert i j* whereas the quantity
Dts2 has a minimum at somet i j*5t i j*

m ~of the order of 0.05!.
This minimal value ofDts2 is equal to 10, . . . ,30.

The maximal value of distanced(jm,j̃m) between FP’s
jm and j̃m was about 2.7 whereas the distanced(jm,jn)
between FP’s encoding different MP’s was varied from
0.1 to 30; usually maxmd(j

m,j̃m)5d maxm,nd(j
m,jn), where

d50.3, . . . ,0.8. For all the cases studied, the new FPj̃m lies
inside the region in which the CA was located before intro-
ducing time delay.

The main properties of the transformation of the CA into
a FPj̃m observed in the case of the currentJi8 and the linear
transfer function hold also if the currentJi9 is used or the
function tanh(gx) or F(x) is taken asf (x) @18,23,27#. Fig-
ures 3~c! and 3~d! illustrate this.

Thus a stabilization of a CA due to feedback with time
delay yielding a new FPj̃m in a neighborhood of the original
FPjm leads to a transitionfixed pointjm→ chaotic attractor
→ new fixed pointj̃m, which can be treated as a dynamical
mechanism of AGI. It is worth noting that this scenario has
been found in a simple enough model. Indeed, only three
variables are used to describe the state of a neuron~that is the
minimal number to admit CA’s!, only one simple nonlinear
termlx3 is included into their dynamical equations~1!, even
linear interactions between neurons@with the transfer func-
tion f (x)5hx# can be taken and even four neurons can con-
stitute a relevant network. Obviously that such a complex
system as the real brain can exploit the above dynamical
mechanism of AGI under wide conditions.
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