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Chaos and associative generation of information by networks of neuronal oscillators
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Networks of neuronlike elements described by a simple model are studied. For a single neuron, a number of
bifurcations and chaotic attractors are observed. A mechanism of an associative production of information
based on a transitiofixed point-chaotic attractor~new fixed points proposed and discussed.
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Recent progresgl] in investigation into neurocomputing that chaos is characterized by divergence, in certain direc-
is based to a large extent on the seminal paper of Hopfieltlons, of close phase trajectories and hence a chaotic attractor
[2] who studied networks composed of binary, all-or-none,(CA) can, in principle, be viewed as a generator of some
formal neurond 3] having symmetric interneuron&ynap- information(see, e.g.[9]). It is natural therefore to look for
tic) couplings. Among brain functions Hopfield concentrateddynamical mechanisms of AGI on the basis of chaotic phe-
only on associative memorgAM), i.e., on a system that nomena in neural networks. Thus our second, main, target
should retrieve an entire stored pattern if sufficient partiaimentioned above closes to the first.
information (a noisy pattern or a part of the original pattern  As a reliable ground of research into computational abili-
is presented to the system. Obviously, it is important to gdies of neural networks, one may take the known Hodgkin-
beyond the limits of this approach towar@i$ models more Huxley equationd11], which provide a good quantitative
close to real nervous systems diidl other types of informa-  description of essential properties of nerve cplis6]. How-
tion processing performed by them. In this paper we attempéver, they are too complicated. As a simplification that re-
to advance in both directions in order to attain the two goalgproduces principal features of the Hodgkin-Huxley equa-
described as follows. tions, the FitzHugh mod€l12] is often accepted5]. The

First, it is desirable to have a model in which a neuron carstate of a neuron is determined, in this model, by two vari-
exhibit a rich variety of dynamical regimes including not ables and therefore dynamical equations for them do not ad-
only such classical phenomena as oscillations, threshold berit chaotic solution$13]. For this reason, we study a simple
havior, etc.(see, e.g.[4-6]) but also chaotic motion. There generalization of the FitzHugh model in which the state of a
are experimental observations that a real nerve cell can demeuron is described by three dynamical variableg,z
onstrate chaotic behavidi7] and chaotic modes can be of whose time evolution is governed by the differential equa-
great importance in brain activity as discussed in a numbetions:
of papers(see, e.g.[6,8,9).

Second, we would like that a system of neuronlike ele- X=a;X+ayy+azz+a,—Ax>+J,
ments can function both as AM and an associative generator
of information. Following the Hopfield approadh,2], we y=byx+byy+bsz+b,, 1)
assume that any piece of informatiguattern u is encoded
by a fixed point(FP) ¢&* of the network dynamics in such a Z=CyX+ Coy+CgZ+Cy.

way that close, in a sense, patterns are mapped into close
points of the phase space. Then an AM machine should op4ere a,.b,.c,,nu=1234, are constanty, is a positive
erate so that if its initial state falls in a neighborhood of a FPconstant, and is a current entering the neuron. Equations
&" then the state converges 6. Analogously, by associa- (1) can also be treated as a reduced variant of the Hodgkin-
tive generation of informatiofAGI) we mean the following:  Huxley equations or as a partly linearized version of the
if the appearance of a pattern encoded by aéFHs ad-  model of Hindmarsh and Rogé4]. They are a straightfor-
versely evaluated for some reason by the systemby an  ward generalization of the van der Pol-Duffing equations
external supervisgithen a new FRE* should be produced in [15] as well. A biological motivation of Eqq1) and inter-
the vicinity of the former, yielding a new pattern. AGI is pretation of the variables and parameters can be different
important for elaboration of plans of behavior, creativedepending on the point of view at the equatits].
thinking, forecasting, and even for such mental processes as Computer simulations show that a single neuron de-
perception and recognition of patterfi]. scribed by Eqgs(1) can possess, depending upon the values
Plainly, AGI machines could be designed by making useof the parameters, such types of attractors as fixed et
of a random generation of numbers. However, this way camperiodic attractoPA), chaotic attractoCA), and coexist-
obviously be too exhaustive and seems to be not plausiblence of up to five attractors can occur in some parameter
for real nervous systems. On the other hand, it is well knownregions:{FP, FB, {FP, PA, {FP, CA}, {PA, PA}, {PA, CA},
{CA, CA}, {PA, PA, PA, {PA, PA, CA, {PA, CA, CA},
{CA, CA, CA}, {PA, PA, PA, PA, {PA, PA, PA, CA, {PA,
*Electronic address: linkevich@psu.vitebsk.by PA, CA, CA}, {PA, CA, CA, CA, {PA, PA, PA, PA, PA,

1063-651X/96/543)/28025)/$10.00 54 2802 © 1996 The American Physical Society



54 CHAOS AND ASSOCIATIVE GENERATION OF INFORMATIM . . . 2803

FIG. 2. A bifurcation diagram for a neurdf) as the coefficient
a, is varied in magnitude along the horizontal axis. Values ofxthe
coordinates of points in the Poincare section defined by intersec-
tions of the phase trajectory with the plape0 are plotted along
the vertical axis.

attractor but samples of such impulses are different for dif-
ferent attractors. In particular, the frequency of impulses as a
function of a current entering a neuron has a form that de-
z pends on the attractor. Another feature, revealed for coexist-
ing CA’s, is a sensitivity of the sample of impulses, for a

particular attractor, to a value of the bifurcation parameter

1

FIG. 1. Phase portraits of two CA'’s projected on thg plane
for a neuron(1l) appearing at different values of the bifurcation
parametera;:(a) a;=3.9; (b) a;=3.96. (Values of the other
parameters are given in the tgxEstimated values of the largest
Lyapunov exponent and the Lyapunov dimensiod, are (a)
N=0.24, d,=2.009; (b) A=0.92, d,=2.033.

The main conclusion here is that Eq$) exhibit both the
classical properties of a neurgas it should be because Egs.
(1) yield a generalization of the FitzHugh modgi@nd prac-
tically all types of chaotic behavior revealed in other three-
dimensional nonlinear systems so that our first target is
achieved in plenty. Unfortunately, there are no relevant neu-
{PA, PA, PA, PA, CA, {PA, PA, CA, CA, CA. A number robiological data to carry out detailed comparisons with our
of bifurcations are observed such as changes of the stabiliyindings.
of FP’s, period doubling, intermittency explosions, interior Now we consider the behavior of a system composed of
and boundary crises, and various changes of the symmetry &f identical elements described by Ed$). The interaction
CA’s and PA’s including homoclinic connections for cycles between the neurons results in the curreiqts. . . ,Jy enter-
of different complexity. ing them. The commonly accepted equation is
As a typical example of a sequence of bifurcations,Ji=Ii+2J-N:1Tijwj, wherel; is an external current received
we mention the following chain: FRP1—FP—2FP— by the neurori and the synaptic efficacy;; determines the
2PD—2C—2|—-2P3—2PD—2C[P3]-C—I—P3 & strength of the influence of an output sigma) of the jth
P3—PD—C[P3& P3]-C—I—P5& P5-PD—C— neuron on the state of thiéh neuron. As usual, we set
2C—2PD—2P1—2FP. This scenario appears W;=f(x;) wheref() is an input-output transfer function of a
as the coefficien, is varied and Eqgs(1) are symmetric neuron assumed to be a monotone signifd a discussion
under reflection (i.e., when a,=b,=c,=J=0; values Of such a representation see, ef§]). A typical simple
of the parameters are the followinga,={a;,—3,3}, choice isw=tanh@X), g=const. A more accurate represen-
by={-55,0,18,c,={18,—18,—2.5}, k=1,2,3, and\=1; tationis the Freeman parametrization of experimental data of
this set of values is used in what follows for illustrations, if the form [6,19] w=®(x) =wg(a— exp{—[exp(BX)—yl/x}),
other values are not givenHereP1, P3, andP5 designate if X>Xo, otherwisew=0. Here xo="*In(y—«Ind) and
a PA comprised of one, three, and five “turns” respectively; Wo,a,8,7,6, andk are constants. We used both the equa-
P3&P3 corresponds to a symmetric cycle similar in form to tions although most intensive studies were carried out for the
two cyclesP3; PD and! are the marks of period doubling linear — approximation of the transfer function,
and intermittency, respectively; the expressfiP3] means W=hx, h=const, because this enables us to look for appro-
that the CA resembles, in a sense, a cyR®[see, e.g., Fig. priate values of the network parameters with the aid of an
1(a)]. The number 2 before a designation of an attractor inanalytic techniqu¢17,18.
dicates that there are actually two attractors symmetric under Following the Hopfield approacft,2], the matrix of in-
reflection. Phase portraits of two CA'’s are given in Fig. 1. Aterneuronal coupling$ should be adjusted so that the set of
bifurcation diagram is given in Fig. pL7]. given N-dimensional vectorst?, ... & encoding memo-
One can also mention such a phenomenon as a tight iriized patterngMP’s) be FP’s(as usually, we consider the
tertwining of coexisting attractors observed at some valuesasep<<N). Therefore the matri¥ must obey the system of
of parameters. This property implies that the shape of &quationsEjTijvf‘wL uf=0. Here vectorsv!, ... vP and
single spike of oscillations does not depend practically on thes?, ... .uP are defined so that v“=f(&*) and
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uf'=ay '+ ay (' +agnl+a,—N(&")°+1/, where (! and

nf* are solutions of the linear equations (b)

b1 &+ byl + b3 +bs=0 and c &'+l +canf+cy ‘

=0 (u=1,...p,i=1,...N). ot il
The general solutiof is expressed through a particular M

solution R and a solutiorH of the corresponding homoge-
neous equation so thdt=R+BH whereB is an arbitrary 0 20 40

matrix. To obtain the matriceR andH, we will use in what [ 5 ' © 1
follows the projection learning rulg20,21, which yields the
equationRlf=RA ™ = (Syrf ™ tof) T Hul+ ZRE o) et i

0
M (@)
and an analogous formula fé#4. Here u=1,...p and w0 1 | ) |
vectors r* are defined so as to satisfy the conditions
ut+l

0

L-2.2 1-5
=

0

Srfv=0,a=1,... u andZyrivf " "#0. -5 450 s00 13 450 500 1
To compute the vectons* we exploit outer productk22] ' ' : ' ' 't ‘
of vectorsv?, ... v* as follows[21]. Let us consider the

componentsV; ... of an axial skew-symmetric tensor FIG. 3. Time dependence of the variakileof the first neuron of
V:Vil---im:ETsilwimkl---kMU&l' . 'U'lk;- Herem=N—p and aliet_vvork iompo;sed =4 r;e_ur:)ns for the case when FP’s are
. . &=(-2.8,-3.1,-7.4,579, &=(-2., 5., 1.7, 7.1 The transfer
.j, are components of the fully antisymmetric tensor. nction isf(x)=tanh(0.2x); a,= —8; values of the other param-
For the case of linearly independent vectors ... v* eters of a neuron are given in the tefe). The synaptic matriX has
treated in what follows, there exists at least one nonzerauch values(see below that & and & are stable FP’s and the
component of the tensorV. Let Vi, on, # 0, network operates as AMb) The synaptic matrix has such values

n,<---<np. Then take arbitrary values as the coordi-that¢" and¢” are nonstable FP’s and CA's occur around théah.
natesby, , ... b, of a vectorb and determine the other TheT syn_aptlc matrix is the same (h) but time delay is introduced
1 m . at time instant=450 (At=5, 73,=0.05,T5,= —14.) sothat the
coordinates by the equation currentJ; is used instead af;. (d) The current);’ is used instead of
m J;, the synaptic matrix is the same as {b) and (c). Time
bi=(V )_12 b vV _ delay is introduced at=450 (Aty=5, 75,=0.04. [Values of el-
] L L O e L AL SRRLUES VAU B A ements of the synaptic matrix are the following=1,2,3,4):(a)
T1,=(95.5068;638.88;:665.71,—266.658), T, =(—699.411,
—882.021;1120.13;175.973) T3, = (652.134;627.987; 409.855;
—105.62), T,=(—66.2163;976.012;887.861;-146.883;(b),
(€),(d) T4=(—176.792-127.611;167.126;33.339), Ty =

Sjl..

whereje{1,2,... ,N}\{nq, ... ,ny}. Every such vectob
is orthogonal to the vectorg, . . . v* and therefore we can
set r“=h. Th_us the synaptic matriX is determined not 176.364-56.2778:192.292:33.9942), Ty — (653.519;
uniquely but, instead, through the set of free parameters a 8.28—420.736-109.835 Tu=(-545.998-301.375:;
they are explicitly given. It is of interest to examine how the503'.5é7.22'9lsé1)]_ DS o T T
behavior of a network is changed as these parameters are '

varied while the FP’s encoding MP’s are retained.

We studied the learning and performance of networkgbove equation for the neuron curredt either by
when the number of neurod=4, 6, or 8 and number of J/(t)=X2;T;;f(x;(t))+=;T;;f(x;(t—7;)) or by J/(t)
MP’s p=2. For any set of MP’s, such synaptic matrices =3;T;;f(x;(t— 7;;)) (we set the external currehtto zerg.
were constructed that produce all types of stability. As theFor simplicity, only one term with time delay was usually
synaptic matrix has been adjusted so that MP’s are stabl@troduced in fact. The corresponding quantity (usually
FP’s, the system can be treated as autoassociative memory,; or 74;) was linearly increased from zero to a fixed value
[see Fig. &) for an illustratiorj [23]. 7} (taken to be in the interval 0.03. .,0.15 during a time

Of special interest here is the case when a FP encodingigterval Aty (we chose as a rulaty=>5 but a value ofAt,

MP loses its stability because the synaptic couplings argvas increased up to 25 to test the stability of effects ob-
modified due to a change of parameters of the above leamingsyeq. The additional synaptic couplin@?s,— were linearly

rule[24,29. The type of motion most often observed now is cpanged from zero to fixed valudg: (taken to be of the
periodic oscillations. It happens that they are preceded by jq, 0.T,). !
irregglar transient. Processes. As parameters of the learning Usuallylf such a stabilization of a CA yields a PA but there
algorithm are varied, transient processes can become stable. ~
and CA’s appear. They may either be placed around the une_X|st.vaIues of parameters 'that a stab!efP O_CCWS' D_e'
stable FP or consist of two such symmetric wings that one oP€Nding on the parameters’ values, this gPeither coin-
them is located around the FP. The phase portraits of the'des with the FRE* from which the CA has appeared or is
CA’s are similar to that shown in Fig.(). a new FP c.lose' tat#. For the Imear.tra.nsfer funct'lon
Inverse transmutation of a CA into a stable FP can obvif (X) =X, the time intervalAt between switching on the time
ously be done by an appropriate change of parameters of tti#elay and stabilization of the FE* was found to be
learning rule. Another way is control of chaos, which can be20, . . .,50. This time can be divided into two phases,
caused by feedback with time delf86] appearing in neural Ats=Atg+Ats,, so that duringAts; the behavior of the
networks in a natural way. We used two models to investi-system seems to be irregular while the second regime is an
gate such a phenomenon. Namely, we replaced thescillatory relaxation towards the R?. Duration of the first
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phaseAty; =10, . ..,20 wasound to be practically indepen- Thus a stabilization of a CA due to feedback with time
dent of the time delay parametef, whereas the quantity delay yielding a new FB* in a neighborhood of the original
At,, has a minimum at somsf; = 77" (of the order of 0.06  FP &+ leads to a transitiofixed point¢“— chaotic attractor
This minimal value ofAtg, is equal to 10. . .,30. — new fixed poin€*, which can be treated as a dynamical
The maximal value of distance(¢”,£#) between FP’s  mechanism of AGI. It is worth noting that this scenario has
&* and ¢* was about 2.7 whereas the distardtg”, £") been found in a simple enough model. Indeed, only three
between FP’s encoding different MP’s was varied fromvariables are used to describe the state of a netinan s the
0.1 to 30; usually m &)=5ma d(&.&), where ~ minimal number to admit CA’)s only one simple nonlinear
6=03,...,0.8. Fc))/r a”a;ffg;:gs studiza, t(hgg ﬁzw"égmes termAx3 is included into their dynamical equatiof®, even

inside the region in which the CA was located before intro-linear interactions between neuropwith the transfer func-
ducing time delay. tion f(x)=hx] can be taken and even four neurons can con-

The main properties of the transformation of the CA into Stitute a relevant network. Obviously that such a complex
a FPE“ observed in the case of the curréitand the linear system as the real brain can explq¢ the apove dynamical
transfer function hold also if the curredf is used or the mechanism of AGI under wide conditions.
function tanh@x) or ®(x) is taken asf(x) [18,23,27. Fig-
ures 3c) and 3d) illustrate this.
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